Abstract

This paper develops an analysis procedure to study the effects of intermetallic compound (IMC) growth on the fatigue life of 63Sn–37Pb (lead-rich)/96.5Sn–3.5Ag (lead-free) solder balls for flip-chip plastic ball grid array packages under thermal cycling test conditions. In this analysis procedure, the thickness of the IMC increased with the number of thermal cycles, and was determined using the growth rate equation. A series of non-linear finite element analyses was conducted to simulate the stress/strain history at the critical locations of the solder balls with various IMC thicknesses in thermal cycling tests. The simulated stress/strain results were then employed in a fatigue life prediction model to determine the relationship between the predicted fatigue life of the solder ball and the IMC thickness. Based on the concept of continuous damage accumulation and incorporated with the linear damage rule, this study defines the damage of each thermal cycle as the reciprocal of the predicted fatigue life of the solder joints with the corresponding IMC thickness. The final fatigue failure of the solder ball was determined as the number of cycles corresponding to the cumulative damage equal to unity. Results show that the solder joint fatigue life decreased as the IMC thickness increased. Moreover, the predicted thermal fatigue life of lead-rich solders based on the effects of IMC growth is apparently smaller than that without considering the IMC growth in the reliability analysis. Results also show that the influence of the IMC thickness on the fatigue life prediction of the lead-free solder joint can be ignored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.