Abstract

The current research presents a novel porous tibia implant design based on porous structure. The implant proximal portion was designed as a porous rhombic dodecahedron structure with 500 μm pore size. Finite element method (FEM) was used to assess the stem behavior under compressive loading compared to a solid stem model. CATIA V5R18 was used for modeling both rhombic dodecahedron and full solid models. Static structural analysis was carried out using ANSYS R18.1 to asses the implant designs. The results indicated enhanced clinical performance of tibial-knee implants compared to the solid titanium implant via increasing the maximum von-Mises stresses by 64% under the tibial tray in porous implant which reduce stress shielding. Also, the maximum shear stress developed in bone/implant interface was reduced by 68% combined with relieving the stress concentration under the stem tip to relieve patients' pain. Finally, porous implants provide cavities for bone ingrowth which improve implant fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.