Abstract

This paper develops and analyzes a semi-discrete and a fully discrete finite element method for a one-dimensional quasilinear parabolic stochastic partial differential equation (SPDE) which describes the stochastic mean curvature flow for planar curves of graphs. To circumvent the difficulty caused by the low spatial regularity of the SPDE solution, a regularization procedure is first proposed to approximate the SPDE, and an error estimate for the regularized problem is derived. A semi-discrete finite element method, and a space-time fully discrete method are then proposed to approximate the solution of the regularized SPDE problem. We show $$L^2$$ -convergence with rates for both, semi- and fully discrete 1methods. Computational experiments are provided to study the interplay of the geometric evolution and gradient type-noises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.