Abstract
This is the first part of a work dealing with the rigorous error analysis of finite element solutions of the nonstationary Navier–Stokes equations. Second-order error estimates are proven for spatial discretization, using conforming or nonconforming elements. The results indicate a fluid-like behavior of the approximations, even in the case of large data, so long as the solution remains regular. The analysis is based on sharp a priori estimates for the solution, particularly reflecting its behavior as$t \to 0$ and as $t \to \infty $. It is shown that the regularity customarily assumed in the error analysis for corresponding parabolic problems cannot be realistically assumed in the case of the Navier–Stokes equations, as it depends on nonlocal compatibility conditions for the data. The results which are presented here are independent of such compatibility conditions, which cannot be verified in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.