Abstract

This paper deals with the computation of nonlinear 2D transient magnetic fields when the data concerning the electric current sources involve potential drop excitations. In the first part, a mathematical model is stated, which is solved by an implicit time discretization scheme combined with a finite element method for space approximation. The second part focuses on developing a numerical method to compute periodic solutions by determining a suitable initial current which avoids large simulations to reach the steady state. This numerical method leads to solve a nonlinear system of equations which requires to approximate several nonlinear and linear magnetostatic problems. The proposed methods are first validated with an axisymmetric example and sinusoidal source having an analytical solution. Then, we show the saving in computational effort that this methodology offers to approximate practical problems specially with pulse-width modulation (PWM) voltage supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.