Abstract

We combine the parameterization method for invariant manifolds with the finite element method for elliptic PDEs, to obtain a new computational framework for high order approximation of invariant manifolds attached to unstable equilibrium solutions of nonlinear parabolic PDEs. The parameterization method provides an infinitesimal invariance equation for the invariant manifold, which we solve via a power series ansatz. A power matching argument leads to a recursive systems of linear elliptic PDEs—the so called homological equations—whose solutions are the power series coefficients of the parameterization. The homological equations are solved recursively to any desired order N using finite element approximation. The end result is an N-th order polynomial approximation of a chart map of the manifold, with coefficients in an appropriate finite element space. We implement the method for a variety of example problems having both polynomial and non-polynomial nonlinearities, on non-convex two dimensional polygonal domains (not necessary simply connected), for equilibrium solutions with Morse indices one and two. We implement a-posteriori error indicators which provide numerical evidence in support of the claim that the manifolds are computed accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.