Abstract
Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L1 and L∞, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L1 convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.