Abstract

The effects of the presence of a high-index medium in the proximity of planar waveguiding structures that makes up buffered leaky waveguides, were studied using a finite element method (FEM) leaky mode solver and a perturbation method. Various phenomena observed in the FEM results were interpreted through the approximate analytical expressions derived using the perturbation method. The effect of the buffer layer thickness, the high-index medium refractive index, and the quasi-confinement of the modal field were investigated. The results show that the perturbation due to the high-index medium can lead to either an increase or a decrease of the real part of the effective index, and that the leakage loss of a TE-polarized mode is not always lower than TM-polarized mode of the same order. It was found that if the refractive index of the high-index medium goes to infinity, a leaky-wave structure evolves into a guided-wave structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.