Abstract

This study aims to explore effects of interfacial bond properties on the anisotropic mechanical behavior of 3D printed concrete. One finite element (FE) model which fully considered the interfacial bond properties with the traction-separation law was established and verified by the experimental results. The influence of nozzle dimensions, interfacial bond strength and concrete properties on the compressive and flexural strengths was analyzed. The results show that the horizontal shear deformation between printed filaments leads to the strength reduction for the 3D printed specimen under compression, and the tensile strength at the mid-span determines the flexural strength of 3D printed specimen. The compressive strength is relatively lower while the flexural strength is much higher for the specimens loaded in Y and Z directions. The simulation shows that the number of interfaces, the tensile and shear properties of the interface between printed filaments contribute the variation of anisotropy under compression and flexure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.