Abstract

<p>In this paper, we present the finite element analysis results for a wind turbine tower using three different finite element models. A typical three-bladed upwind onshore wind turbine, with rated power production of 2 MW, is chosen as a reference case study. Tapered cross-section of the wind turbine tower has been incorporated in the inner product while estimating the stiffness matrix of the finite element model. Linear static analysis is carried out for a typical aero thrust load applied at the tip of the tower. The finite element results are benchmarked using 3-D linear and quadratic brick and shell elements using ANSYS. It is shown here that Euler-Bernoulli beam model predicts the response of the wind turbine tower quite accurately. The beam model is computationally more efficient compared to shell and solid element models without compromising the accuracy of the results.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call