Abstract

Large deformation finite element analysis has been used to study the near crack tip growth of long cylindrical holes aligned parallel to the plane of a mode I plane strain crack. The near crack tip stress and deformation fields are analyzed. The results show that the holes are pulled towards the crack tip and change their shape to approximately elliptical with the major axis radial to the crack. They also grow faster directly ahead of the crack than at an angle to the crack plane. Several crack-hole coalescence criteria are discussed and estimates for the conditions for fracture initiation are given and compared with experimental results. The range of estimates now available from finite element calculations coincides quite well with the range of experimental data for materials containing inclusions which are only loosely bonded to the matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.