Abstract

Two- (2D) and three-dimensional (3D) finite element analyses for flow around two square columns in tandem arrangement were performed with various column spacings and Reynolds numbers. The computed values were compared with the wind-tunnel results in terms of the aerodynamic characteristics of the leeward column. In most 2D computations, strong vortices were formed behind the windward column, irrespective of widely changed Reynolds numbers. This was different from the experimental phenomena of equivalent spacing, so that the computed time-averaged pressure coefficients were not identical to the experimental values except when the distance between the two columns was adequately wide or narrow. On the other hand, in 3D computation, distinct differences in flow structures behind the column were observed between Reynolds numbers of 103 and 104 and the pressure coefficient in the 3D analysis with Re=104 agreed well with the experimental value. Thus, the effectiveness of 3D computations and Reynolds number effects on the flow around two square columns have been confirmed. © 1998 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call