Abstract

Heat conduction in an array of triangular fins with an attached wall is modeled using the finite element method. An adaptive mesh refinement technique is developed giving accuracy comparable to uniform mesh refinement and much increased computational efficiency. The effects of wall thickness and fin spacing are examined for various Biot numbers. It is shown that for low Biot numbers ( Bi < 0.1), the one-dimensional assumption is valid but for higher Biot numbers ( Bi ⪢ 0.1), two-dimensional heat conduction must be considered, temperature distributions at the fin root are always non-uniform and the fin is found not to be effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.