Abstract
A finite element formulation of the vibrations of piezoelectric quartz resonators based on Mindlin plate theory is derived. The higher-order plate theory is employed for the development of a collection of successively higher-order plate elements which can be effective for a broad frequency range including the fundamental and overtone modes of thickness-shear vibrations. The presence of electrodes is also considered for its mechanical effects. The mechanical displacements and electric potential are combined into a generalized displacement field, and the subsequent derivations are carried out with all the generalized equations. Through standard finite element procedure, the vibration frequency and vibration mode shapes including the electric potential distribution are obtained. The frequency spectra is compared with some well-known experimental results with good agreement. Our previous experience with finite element analysis of high frequency quartz plate vibrations leads us to believe that memory and computing time will always remain as key issues despite the advances in computers. Hence, the use of sparse matrix techniques, efficient eigenvalue solvers, and other reduction procedures are explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.