Abstract
To explore the biomechanical changes of the lumbar spine segment of idiopathic scoliosis under different loads by simulating six kinds of lumbar spine motions based on a three-dimensional finite element (FE) model. Methods According to the plain CT scan data of L1-L5 segment of an AIS patient, a three-dimensional FE model was established to simulate the biomechanics of lumbar scoliosis under different loads. The lumbar model was reconstructed using Mimics20.0, smoothed in Geomagic2013, assembled in Solidworks 2020, with FE analysis performed using Workbench19.0. Results The completed model had a total of 119029 C3D4 solid elements, 223805 nodes, including finely reconstructed tissue structures. In patients with AIS, the range of motion (ROM) is reduced under all loads. Under flexion loads, the vertebral concave stress distribution is greater; under extension lateral bending, and rotation load at the posterior side of the vertebral body, the stress is concentrated in the L3 vertebral arch. The buffering effect of intervertebral disc on the rotational load is the weakest. Different loads of AIS cause corresponding changes in the force and displacement of different positions of the vertebral body or intervertebral discs. Conclusions The change in physiological shape of the lumbar vertebrae limits the ROM of the lumbar vertebrae. The stress showed a trend of local concentration which located in the concave side of the scoliosis. The stress on the lumbar vertebrae comprising the greatest curvature is the most excessive. The stress in the intervertebral disc under the rotating load is greater than that under other kinds of loads, and the intervertebral disc is more likely to be injured because of the rotating load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.