Abstract
On the basis of analyzing the cutting edge structure and cutting edge radius measurement of high-speed insert, thermal - mechanical coupling finite element method (FEM) is used in this paper, to obtain the effect law of different cutting edge radius on the mechanical-thermal distribution of high-speed cutting TiAl6V4. At last, cutting experiments are carried out to verify FEM results. There is a clear exposition of the intrinsic reason why the cutting edge radius has influence on the mechanical -thermal distribution of high-speed cutting process. The results indicate that the experimental results have a good agreement with FEM; with the cutting edge radius increases, cutting force increases; cutting temperature is not monotonic, but there exists an optimum edge radius that makes temperature lowest; cutting edge changes the plastic flow of materials around tool tip and broaden plastic deformation zone. The cutting edge radius has a greater impact on equivalent stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.