Abstract

AbstractTime transience-related nonreciprocal effect due to ambient temperature variations has significant influence in the bias stability performance of interference-type fiber optic gyroscopes (I-FOG). This paper presents the thermal finite element analysis (FEA) done on a 10-km-long I-FOG sensing coil wound with a diameter of 10 cm in a bipolar configuration for identifying its bias performance during ambient temperature variations. Results indicate that, with a sampling frequency of 0.5 kHz, the ambient temperature variation of 0.5°/min could degrade the bias stability performance of the I-FOG to tactical grade level, while maintaining ambient temperature variation within 0.01°/min is required to attain bias stabilities >0.001°/h, the performance required for the strategic grade applications. It is also identified that in a temperature stabilized environment, sensing coil with 10 and 40 layers requires a thermal stabilization time of about 9 and 26 min, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.