Abstract
Mechanical response of the human head under a side car crash impact is crucial for modeling traumatic brain injuries (TBI) or concussions. The current advances in computational methods and the finite element models of the human head provide a significant opportunity for biomechanical study of brain injuries; however, limited experimental data is available for delineating the injury relationship between the head injury criteria (HIC) and the tensile pressure or von Mises stress. In this research, we assess human head injuries in a side impact car crash using finite element (FE) simulations that quantify the tensile pressures and maximum strain profiles. In doing so, five FE analyses for the human head have been carried out to investigate the correlations between the HIC measured in the dummy model at different moving deformable barrier (MDB) velocities increasing from 10 mph to 30 mph in 5 mph increments and the pressure and von Mises stress of the skull, the skin, the cerebral spinal fluid (CSF) and the brain. The computational simulation results for the tensile pressures and von Mises stresses correlated well with the HIC15 and peak accelerations. Also a second-order polynomial seemed to fit the stress levels to the impact speeds and as such the presented method for using FE human head analysis could be used for reconstruction of head impacts in different side car crash conditions; furthermore, the head model would provide a tool for investigation of the cause and mechanisms of head injuries once the type and locations of injuries are quantified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.