Abstract
A numerical analysis for the flow and heat transfer of solid particles in moving beds of heat exchangers is presented. The solid particles pass through a bundle of heat source tubes as the result of the gravitational force. Heat energy is transferred through direct contact of particles with the heat source tubes. A viscous-plastic fluid model and a convective heat transfer model are employed in the analysis. The flow field dominantly determines the total heat transfer in the heat exchanger. As the velocities of solid particles around the heat source tubes increase, the heat transfer from the tubes also increases. Examples are presented to show the performance of the numerical model. The effect of flow on heat transfer has also been studied. © 1998 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.