Abstract

The application of Metal Matrix Composite (MMC) has been increasing due to its superior strength and wear characteristics but the major challenge is its poor machinability due to the presence of reinforcement in the matrix which is a hindrance during machining. The material behaviour during machining varies with respect to input variables. In this paper the effect of cutting speed during the orthogonal turning of A359/SiCp MMC with TiAlN tool insert is analysed by developing a 2D Finite Element (FE) model in Abaqus FEA code. The FE model is based on plane strain formulation and the element type used is coupled temperature displacement. The matrix material is modeled using Johnson–Cook (J-C) thermal elastic–plastic constitutive equation and chip separation is simulated using Johnson–Cook’s model for progressive damage and fracture with parting line. Particle material is considered to be perfectly elastic until brittle fracture. The tool is considered to be rigid. The FE model analyses the tool interaction with the MMC and its subsequent effects on cutting forces for different cutting speeds and feed rates. The chip formation and stress distribution are also studied. The FE results are validated with the experimental results at cutting speeds ranging from 72 – 188 m/min and feed rates ranging from 0.111 – 0.446 mm/rev at constant depth of cut of 0.5mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.