Abstract

The finite element (FE) method was used to analyze the effect of coupling conditions between the actuator and the round window membrane (RWM) on the performance of round window (RW) stimulation. A FE model of the human ear consisting of the external ear canal, middle ear and cochlea was firstly developed, and then validation of this model was accomplished through comparison between analytical results and experimental data in the literature. Intracochlear pressure were derived from the model under normal forward sound stimulation and reverse RW stimulation. The equivalent sound pressure of RW stimulation was then calculated via comparing the differential intracochlear pressure produced by the actuator and normal ear canal sound stimulus. The actuator was simulated as a floating mass and placed onto the middle ear cavity side of RWM. Two aspects about the actuator coupling conditions were considered in this study: (1) the cross-section area of the actuator relative to the RWM; (2) the coupling layer between the actuator and the RWM. The results show that smaller actuator size can improve the implant performance of RW stimulation, and size requirements of the actuator can also be reduced by introducing a coupling layer between the actuator and RWM, which will benefit the manufacture of the actuator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call