Abstract

The foundations of buildings adjacent to excavation, bridges abutments and towers footings for mobile phone and power transmission lines, may stand dangerously near a slope. This research shows the use of finite element method in order to analyze factors that have effect on the bearing capacity such as the changes in the soil properties C and O where C and O are the cohesion and the friction of angle of soil, respectively and changes in the geometry of model, angle of slope β and the ratio b/B where b is the distance between footing and the point on the crest slope and B is the footing width. The results show that the increase in the ratio value b/B leads to an increase in the bearing capacity and it reduces the vertical settlement. The closeness of the footing to the edge of the slope leads to a reduction in its bearing capacity, the values of the lateral stress and lateral settlement are small when the ratio value is b/B>2.5. The bearing capacity decreases and the vertical settlement increases with the increase of the value of the angle of slope β; the decrease in the bearing capacity becomes significant when the value of slope angle increases more than 25o. The increase in the friction angle has a higher effect than the one in the soil cohesion on the bearing and displacement. Design chart is obtained through which the mount of change in the bearing capacity of the footing nearby slope can be estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call