Abstract

AbstractA finite‐element analysis of Taylor flow in a cylindrical capillary was performed using a commercial FEM program (FIDAP) to solve the fundamental fluid dynamics equations together with the capillary forces at the gas–liquid interface. A moving‐surface formulation was used to calculate the bubble shape. The thickness of the liquid film surrounding the gas bubble, the degree of mixing in the liquid phase, and the slip velocity between the two phases were calculated. These parameters influence the performance of monolith reactors operating in the Taylor flow regime. On comparison with experimental results it was found that the FEM calculation generally predicts a thinner liquid film, which can possibly be explained in terms of a peripheral variation in surface tension. Moreover, the wavelength of the wiggles predicted in the liquid film near the tail end of the bubble was compared to those arising from a simplified mathematical analysis available in the literature. Good agreement was found for Ca < 0.005, while for higher Ca the FEM predicts significantly shorter wavelengths, indicating that the lubrication theory is not valid here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.