Abstract

The current investigation sought to utilize finite element analysis to replicate the biomechanical effects of different fixation methods, with the objective of establishing a theoretical framework for the optimal choice of modalities in managing Pauwels type III femoral neck fractures. The Pauwels type III fracture configuration, characterized by angles of 70°, was simulated in conjunction with six distinct internal fixation methods, including cannulated compression screw (CCS), dynamic hip screw (DHS), DHS with de-rotational screw (DS), CCS with medial buttress plate (MBP), proximal femoral nail anti-rotation (PFNA), and femoral neck system (FNS). These models were developed and refined using Geomagic and SolidWorks software. Subsequently, finite element analysis was conducted utilizing Ansys software, incorporating axial loading, torsional loading, yield loading and cyclic loading. Under axial loading conditions, the peak stress values for internal fixation and the femur were found to be highest for CCS (454.4; 215.4 MPa) and CCS + MBP (797.2; 284.2 MPa), respectively. The corresponding maximum and minimum displacements for internal fixation were recorded as 6.65 mm for CCS and 6.44 mm for CCS + MBP. When subjected to torsional loading, the peak stress values for internal fixation were highest for CCS + MBP (153.6 MPa) and DHS + DS (72.8 MPa), while for the femur, the maximum and minimum peak stress values were observed for CCS + MBP (119.3 MPa) and FNS (17.6 MPa), respectively. Furthermore, the maximum and minimum displacements for internal fixation were measured as 0.249 mm for CCS + MBP and 0.205 mm for PFNA. Additionally, all six internal fixation models showed excellent performance in terms of yield load and fatigue life. CCS + MBP had the best initial mechanical stability in treatment for Pauwels type III fracture. However, the MBP was found to be more susceptible to shear stress, potentially increasing the risk of plate breakage. Furthermore, the DHS + DS exhibited superior biomechanical stability compared to CCS, DHS, and PFNA, thereby offering a more conducive environment for fracture healing. Additionally, it appeared that FNS represented a promising treatment strategy, warranting further validation in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.