Abstract

Self-piercing riveting (SPR) is a high-speed fastening process that can join similar and dissimilar sheet materials without the need for pre-processing such as drilling or punching. During SPR processes, two overlapping sheets are joined by a rivet. The upper sheet is punched first by the rivet and then the lower sheet is deformed between the rivet and the die, creating a mechanical interlock. In this study, self-piercing riveting of aluminum alloy and carbon fiber reinforced polymer composites (CFRP) sheets was analysed using finite element simulations. For the finite element simulation of SPR processes, the orthogonal elasticity, the fracture model, and the cohesive zone model were used for describing the behaviour of CFRP. For validation of the composite material model, the punching process of CFRP was performed and the results were compared with FE predictions. The SPR process of the aluminum alloy and CFRP was simulated numerically and the performance of the joint was evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.