Abstract

Micropolar fluids provide an alternative mechanism for simulating micro-scale and molecular fluid mechanics which require less computational effort. In the present paper, a numerical analysis is conducted for the primary and secondary flow characterizing dissipative micropolar convective heat and mass transfer from a rotating vertical plate with oscillatory plate velocity, adjacent to a permeable medium. Owing to high temperature, thermal radiation effects are also studied. The micropolar fluid is also chemically-reacting, both thermal and species (concentration) buoyancy effects and heat source/sink are included. The entire system rotates with uniform angular velocity about an axis normal to the plate. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. The partial differential equations governing the flow problem are rendered dimensionless with appropriate transformation variables. A Galerkin finite element method is employed to solve the emerging multi-physical components of fluid dynamics problem are examined for a variety of parameters including rotation parameter, radiation-conduction parameter, micropolar coupling parameter, Eckert number (dissipation), reaction parameter, magnetic body force parameter and Schmidt number. A comparison with previously published article is made to check the validity and accuracy of the present finite element solutions under some limiting case and excellent agreement is attained. The current simulations may be applicable to various chemical engineering systems, oscillating rheometry, and rotating MHD energy generator near-wall flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.