Abstract

The restraint intensity of Ti80 T-joints was investigated using finite element analyses. The influence of slit height, vertical plate thickness and base plate thickness was studied, respectively. Results show that the slit height and vertical plate thickness have a significant impact, while the effect of base plate thickness is negligible. A prediction model of restraint intensity was constructed through binary linear regression; the error was estimated at about 10%. Then, finite element simulations were carried out to study the welding residual stresses of specimens with different restraint intensities. The results show that residual stresses on the backing weld surface are higher in the middle and lower at both ends, while the weld root shows opposite results. In general, stresses at the weld root are greater than those on the weld surface. The mean value of the residual stress at the weld root increases with the increase in restraint intensity but not uniformly, i.e., it is slow at first and then it increases rapidly. A prediction model of the residual stress was produced through cubic fitting, and the errors between the finite element simulations and predictions were about 8%. Using the prediction model, the residual stress of actual Ti80 alloy workpieces can be estimated before welding, and a corresponding strategy for avoiding cracks can be generated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.