Abstract

In the present study, the rate- and state-dependent friction model [Hashiguchi and Ozaki, 2008] is implemented in the dynamic finite element method. The typical rate- and state-dependent frictional contact problems, which are consisted by elastic and rigid bodies having simple shapes, are then analyzed by the present method. The validity of the present method for the microscopic sliding and stick-slip instability is examined under various dynamic characteristics of the system, such as contact load, elastic stiffness, driving velocity and frictional properties. It is shown that the present method can solve simultaneously not only rate- and state-dependent frictional behavior on the contact boundary but also coupling effects with internal deformations, whereas it cannot predicted by the conventional finite element analysis with the Coulomb’s friction law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.