Abstract

In this study, the nanoindentation responses of Bi2Se3 thin film were quantitatively analyzed and simulated by using the finite element method (FEM). The hardness and Young’s modulus of Bi2Se3 thin films were experimentally determined using the continuous contact stiffness measurements option built into a Berkovich nanoindenter. Concurrently, FEM was conducted to establish a model describing the contact mechanics at the film/substrate interface, which was then used to reproduce the nanoindentation load-depth and hardness-depth curves. As such, the appropriate material parameters were obtained by correlating the FEM results with the corresponding experimental load-displacement curves. Moreover, the detailed nanoindentation-induced stress distribution in the vicinity around the interface of Bi2Se3 thin film and c-plane sapphires was mapped by FEM simulation for three different indenters, namely, the Berkovich, spherical and flat punch indenters. The results indicated that the nanoindentation-induced stress distribution at the film/substrate interface is indeed strongly dependent on the indenter’s geometric shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.