Abstract

A finite element analysis (FEA) model to analyze imprint of a bulk metallic glass (BMG) in the temperature range near the glass transition temperature (Tg) has been developed. The material model includes both Newtonian and non-Newtonian flow behavior. The results reveal that the topology of the imprinted surface depends strongly on temperatures, but only mildly on surface feature scale. As a result of the flow characteristics of BMG in the temperature range above Tg, the lubrication condition has only a slight effect on BMG imprinting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.