Abstract

A magnetically shielded wire (MSW), which has magnetic-conductive thin layers on the surface of a wire conductor, is expected to reduce the eddy current losses due to the proximity effect. The conventional finite-element method (FEM) needs unacceptably long computational time to analyze eddy currents in multi-turn MSWs. This paper proposes a homogenization method, which models MSW as a uniform material with complex permeability. The coil impedance evaluated by the homogenization-based FEM with coarse elements is shown to agree well with that obtained by the conventional FEM with much finer elements. Moreover, the optimal shield thickness is determined by the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.