Abstract

There is an immense requirement of exoskeleton observed in recent years for applications stretching from rehabilitation to military. The availability of resources and modern technologies enabled the researchers to come up with numerous ideas for realization of exoskeleton. This study proposed a novel design of exoskeleton and performed a Ludwig von Mises stress analysis upon the model. 3D model of the proposed exoskeleton have been constructed and angles of hip, knee, and ankle joints are varied to represent different instances during sit-to-stand transition and stress analysis were performed for the models. Three materials have been chosen to realize the model and compared with the simulation results. Interpretation of stress distribution is established during the model subjects to a load. The peak Ludwig von Mises stress is observed at critical areas in the exoskeleton model, which envisages the possibility of fracture. The maximum stress of 22 MPa was perceived during the simulation. The research also claims the possibility of aluminum 1060 alloy for constructing an exoskeleton frame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.