Abstract

Hydrogen embrittlement is commonly considered as an important failure mechanism for some typical steel pressure vessels and pipes made of such as Cr–Mo and 4130X steels at high-pressure hydrogen environment. In previous work, we investigated the hydrogen transport mechanisms of Crmo steel pressure vessels at room temperature. Furthermore, high temperature environment may affect the hydrogen transport mechanisms and hydrogen-induced crack behaviors in these structures to a large extent. In this paper, we study the hydrogen transport mechanisms in 2.25Cr–1Mo steel pressure vessel at high temperature under the support of National Key Fundamental Research and Development Project of China (2015.1-2019.12). The main work is to explore the effects of temperature, hydrogen concentration, and structural sizes on the transient hydrogen diffusion and distribution behaviors in Crmo steel pressure vessels using finite element analysis. Numerical results show that elevated high temperature accelerates the hydrogen embrittlement sensitivity, especially at structural discontinuities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.