Abstract

Transdermal drug delivery (TDD) based on microneedles is an excellent approach due to its advantages of both traditional transdermal patch and hypodermic syringes. In this paper, the fabrication method of hollow out-of-layer hafnium oxide (HfO2) microneedles mainly based on deep reactive ion etching of silicon and atomic layer deposition of HfO2is described, and the finite element analysis of the microneedles based on ANSYS software is alsopresented. The fabrication process is simplified by using a single mask. The finite element analysis of a single microneedle shows that the flexibility of the microneedles can be easily adjusted for various applications. The finite element analysis of a 3×3 HfO2 microneedle array applied on the skin well explains the "bed of nail" effect, i.e., the skin is not liable to be pierced when the density of microneedles in array increases. The presented research work here provides useful information for design optimization of HfO2 microneedles used for TDD applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.