Abstract

PurposeThe objective of this paper is to identify suitable lattice structure patterns for the design of porous bone implants manufactured using additive manufacturing.Design/methodology/approachThe study serves to compare and analyse the mechanical behaviours between cubic and octet-truss gradient lattice structures. The method used was uniaxial compression simulations using finite element analysis to identify the translational displacements.FindingsFrom the simulation results, in comparison to the cubic lattice structure, the octet-truss lattice structure showed a significant difference in mechanical behaviour. In the same design space, the translational displacement for both lattice structures increased as the relative density decreased. Apart from the relative density, the microarchitecture of the lattice structure also influenced the mechanical behaviour of the gradient lattice structure.Research limitations/implicationsGradient lattice structures are suitable for bone implant applications because of the variation of pore sizes that mimic the natural bone structures. The complex geometry that gradient lattice structures possess can be manufactured using additive manufacturing technology.Originality/valueThe results demonstrated that the cubic gradient lattice structure has the best mechanical behaviour for bone implants with appropriate relative density and pore size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.