Abstract

Stone columns in soft soil improve bearing capacity because they are stiffer than the material which they replace, and compacted stone columns produce shearing resistances which provide vertical support for overlying structures or embankments. Also stone columns accelerate the consolidation in the native surrounding soil and improve the load settlement characteristics of foundation. In this paper, the finite element method is utilized as a tool for carrying out analyses of stone column–soil systems under different conditions. A trial is made to improve the behaviour of stone column by encasing the stone column with geogrid as reinforcement material. The program CRISP-2D is used in the analysis of problems. The program allows prediction to be made of soil deformations considering Mohr-Coulomb failure criterion for elastic–plastic soil behaviour. A parametric study is carried out to investigate the behaviour of standard and encased floating stone columns in different conditions. Different parameters were studied to show their effect on the bearing improvement and settlement reduction of the stone column. These include the length to diameter ratio (L/d), shear strength of the surrounding soil and, the area replacement ratio (as) and others. It was found that the maximum effective length to diameter (L/d) ratio is between (7–8) for Cu, between (20–40) kPa and between (10–11) for Cu = 10 kPa for ordinary floating stone columns while the effective (L/d) ratio is between (7–8) for encased floating stone columns. The increase in the area replacement ratio increases the bearing improvement ratio for encased floating stone columns especially when the area replacement ratio is greater than (0.25). The geogrid encasement of stone column greatly decreases the lateral displacement compared with ordinary stone column.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call