Abstract
The nonlinear behaviors of functionally graded material (FGM) plates under transverse distributed load are investigated here using a high precision plate bending finite element. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of the constituents. The effective material properties are then evaluated based on the rule of mixture. The formulation is developed based on the first-order shear deformation theory considering the physical/exact neutral surface position. The shear correction factors are evaluated employing the energy equivalence principle. The transverse shear stresses and transverse normal stress components are obtained using the in-plane stresses evaluated from the constitutive equations and the three-dimensional equilibrium equations. The nonlinear governing equations are obtained following a standard finite element procedure and solved through Newton–Raphson iteration technique to predict the lateral pressure load versus central displacement relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.