Abstract

In this paper, the tangential zone of cartilage is introduced into the fiber-reinforced model of articular cartilage. Considering the distribution content of the main fiber and the secondary fiber in the tangential layer of cartilage, the permeability and fiber stiffness of the layer are set in parallel and perpendicular directions, respectively, to more accurately reflect the mechanical behavior of cartilage. The parameters are set to reflect the mechanical behavior of the cartilage more realistically. We use a modified articular cartilage model to simulate the mechanical properties of implanted cartilage with different elastic modulus. The simulation results show that the selection of implants with different elastic modulus will affect the repair of cartilage. Appropriately increasing the elastic modulus of implanted cartilage, can increase the bearing capacity of the repaired area and reduce the stress concentration at the junction. The elastic modulus of the implant should be moderate, not too large or too small, and the damage of stress concentration on the repair surface should be considered. Through simulation, the mechanical state of the repaired cartilage under pressure can be obtained comprehensively, which provides a theoretical basis for clinical pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call