Abstract

A finite element model is established for simulating flow in and out a porous media. The extended Darcy equation inside the porous media and the Navier–Stokes equations in the fluid are coupled via the continuity condition at the interface between the two media. The model is firstly validated against the analytical and the numerical results available in literature. Then it is applied to simulate flow past a circular cylinder covered by a porous layer. The effect of the porous layer on the reduction of lift coefficient is investigated numerically. It is found that the lift reduction can be achieved by properly choosing the porous material. However, the amount of reduction greatly depends on the Reynolds number, the permeability and the Forchheimer coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call