Abstract

Thermal-electrical-fluid coupled finite element analyses are performed in the model of the growth cell in a high- pressure and high-temperature (HPHT) cubic apparatus in which the large diamond crystal can be grown by using Ni-based solvent with temperature gradient method (TGM). The convection in the Ni-based solvent with different thicknesses at 1700–1800K is simulated by finite element method (FEM). The experiments of diamond crystal growth are also carried out by using Ni-based solvent at 5.7GPa and 1700–1800K in a China-type cubic high pressure apparatus (CHPA). The simulation results show that the Rayleigh number in the solvent is enhanced obviously with the increasing solvent thickness. Good quality diamond single crystal cannot be grown if the Rayleigh number in the solvent is too high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.