Abstract

This research presents a finite-element analysis of the electromechanical field of a BLDC motor considering speed control and mechanical flexibility. The magnetic field is analyzed by the nonlinear time-stepping finite-element method considering the switching action of the pulse width modulation (PWM) inverter. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stepping finite-element method considering the flexibility of shaft, rotor, and bearing. Both magnetic and mechanical finite-element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.