Abstract

Although very accurate in representing the material anisotropy, finite element analysis based on direct use of a polycrystal model is CPU-intensive (Guan et al., 2006a). In the present study, this Taylor-type polycrystalline model was firstly used to predict the anisotropy coefficients of Yld96 yield function. Then this phenomenological anisotropic yield function was implemented into ABAQUS/Standard finite element code, using UMAT, for the hydroforming simulation of a 6061-T4 extruded aluminum tube. It was shown that compared with von Mises (1913) and Hill's (1948) yield function, the Yld96 material model's predictions are in better agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.