Abstract

In this study the finite element formulation for the dynamics of a bridge traversed by moving vehicles is presented. The vehicle including the driver and the passenger is modelled as a half-car planner model with six degree of freedom, travelling on the bridge with constant velocity. The bridge is modelled as a uniform beam with simply supported end conditions that obeys the Timoshenko beam theory. The governing equations of motion are derived using the extended Hamilton principle and then transformed into the finite element format by using the weak-form formulation. The Newmark-β method is utilized to solve the governing equations and the results are compared with those reported in the literature. Furthermore, the maximum values of deflection for the Timoshenko and Euler—Bernoulli beams have been compared. The results illustrated that as the velocity of the vehicle increases, the difference between the maximum beam deflections in the two beam models becomes more significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call