Abstract

Instent restenosis (ISR) has been a key factor that restricts the further use of intraoronary stents. And the mechanical interaction between the stent and the artery has been indicated as one of the significant causes for the activation of stent-related restenosis. However, there is very little quantitative information about the interaction of stent with artery. In order to improve the general understanding of coronary stenting, finite element method (FEM) has been used to model the revascularization of a stenosed artery through the insertion of a balloon-expandable stent. Given a stent design, the deformed shape of the stent and possible areas of the artery injury were presented. The fact that the distal end of stent penetrated into the artery wall may help to explain the phenomena that much restenosis occurs at the ends of stents. The recoil ratios of the stent model, the plaque-artery model and the stent-plaque-artery model were 2%, 26.7% and11.3%, respectively. They were well consistent with the experimental data. In conclusion, this work would be helpful for the general understanding of intraoronary stent implantation and stent design optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.