Abstract

This research is devoted to developing a finite element model using Abaqus code for the computer simulation of an in-house developed and manufactured rubber bearing subjected to static vertical and cyclic horizontal loads. A high-damping rubber compound was designed. The material behavior of the rubber was assumed to be described by the hyper-viscoelastic model. Both linear (Prony series) and nonlinear (strain hardening power law) viscoelastic relationships were used in conjunction with the Ogden-Roxburgh equation to take the addition of the stress softening phenomenon or Mullins effect into consideration. The parameters of the material model were determined using MCalibration code in which an optimization technique was used, and data obtained in experiments carried out on test specimens were fitted into the selected model. The results of the simulations were compared with their corresponding experimental data carried out on the rubber bearing. The force-displacement behavior, stress and strain fields, and computed energy were presented and discussed. It is shown that the nonlinear viscoelastic model accompanied by the Mullins effect gives the best results. Moreover, the model could accurately predict the energy variations during the earthquake loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.