Abstract

This research focuses on the development and simulation analysis of heat-dissipating fins made of copper, integrated into photovoltaic panels, with the aim of mitigating temperature increases during operation. This initiative arises from evidence that solar panels experience a reduction in energy efficiency when operating at temperatures higher than standard test conditions. The photovoltaic panel was simulated both without fins and with fins under standard test conditions and extreme conditions. The simulation consists of the following steps: design, meshing, selection of physical models and materials, assignment of boundary conditions, validation of the simulation, and interpretation of the results. During validation, results obtained via simulation were compared experimentally, yielding a mean absolute percentage error of 0.28%. It was concluded that the fins with the greatest heat dissipation relative to their area are those of 40 mm height; with this height, the temperature of the photovoltaic panel is reduced by 2.64 K, which represents an efficiency increase of 1.32%. Furthermore, it was concluded from the analyzed data that the efficiency of the fins increases at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call