Abstract

The ostrich foot toenail plays a crucial role in the process of ostrich foot traveling on sand. 3D laser scanner was used to measure the three-dimensional point clouds of ostrich foot toenail surface morphology, and the three-dimensional model of ostrich foot toenail was reconstructed by using reverse engineering technology. The finite element analysis in the interactions between ostrich foot toenail and sand was implemented by Abaqus and Hypermesh. The quasi-static analytical results of ostrich foot toenail inserting the sands showed that the groove structure of the toenail had a better sand fixation effects, the tiptoe structure was conducive to insert into the sands, and the inverted triangular structure of the toenail had the weak disturbance on the sands which produced the less resistance of the toenail inserting the sands. According to the velocity and the stress fields in the process of the ostrich foot toenail dynamically traveling on sand, ostrich foot toenail tiptoe could help to improve the thrust of traveling on sand, the groove area of the toenail played the effects of sand fixation and flow limitation in the process of ostrich foot toenail traveling on sand. Keywords: ostrich foot toenail, reverse engineering, model reconstruction, finite element simulation, sand fixation and flow limitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.