Abstract

Failures in IT electronics are often caused by falling or external shocks during transportation. These failures cause customers to mistrust the reliability of the products. Many manufacturers of IT electronics have not only used cushioning materials but also increased the shock resistance of their products for failure prevention. Especially in case of printer products, the design of the packaging and the product robustness are extremely important because of their substantial weight and the fragility of the internal modules. For product design, it is essential to understand the impact failure mechanism of the products. In this study, a compression test, a drop impact test, and a finite element analysis (FEA) were performed to analyze the dynamic behaviors of a packaged multifunction printer (MFP). The mechanical properties of a cushioning material were measured by compression tests. The FE models of the cushion packaging and the MFP included the physical characteristics of the internal modules, and their dynamic behaviors were obtained using the commercial software ls-dyna3d. Simulation results were also compared with drop test results to verify the proposed FE models. The shock resistance of the MFP was assessed by stress analysis and strength evaluation. We also expect our FE models will be useful for evaluating the fragility of the internal modules because the models can numerically estimate the shock acceleration profiles of the internal modules, which are difficult to measure experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.