Abstract

In metal forming, there are problems with recurrent geometric characteristics without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear (which is industrially useful and geometrically complicated) has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. The three-dimensional deformed pattern by the finite element analysis is shown, and the forging load is compared with the experimental load. The profiles of the free surface of the workpiece show good agreement between the computation and the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.