Abstract

A 2-D finite element model of the cornea is developed to simulate corneal reshaping and the resulting deformation induced by refractive surgery. In the numerical simulations, linear and nonlinear elastic models are applied when stiffness inhomogeneities varying with depth are considered. Multiple simulations are created that employ different geometric configurations for the removal of the corneal tissue. Side-by-side comparisons of the different constitutive laws are also performed. To facilitate the comparison, the material property constants are identified from the same experimental data, which are obtained from mechanical tests on corneal strips and membrane inflation experiments. We then validate the resulting models by comparing computed refractive power changes with clinical results. Tissue deformations created by simulated corneal tissue removal using finite elements are consistent with clinically observed postsurgical results. The model developed provides a much more predictable refractive outcome when the stiffness inhomogeneities of the cornea and nonlinearities of the deformations are included in the simulations. Finite element analysis is a useful tool for modeling surgical effects on the cornea and developing a better understanding of the biomechanics of the cornea. The creation of patient-specific simulations would allow surgical outcomes to be predicted based on individualized finite element models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.